A Blockchain-Enabled Trustless Crowd-Intelligence Ecosystem on Mobile Edge Computing
【Author】 Xu, Jinliang; Wang, Shangguang; Bhargava, Bharat K.; Yang, Fangchun
【Source】IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
【影响因子】11.648
【Abstract】Crowd intelligence tries to gather, process, infer, and ascertain massive useful information by utilizing the intelligence of crowds or distributed computers, which has great potential in Industrial Internet of Things. A crowd-intelligence ecosystem involves three stakeholders, namely the platform, workers (e.g., individuals, sensors, or processors), and task publisher. The stakeholders have no mutual trust but interest conflict, which means bad cooperation of them. Due to lack of trust, transferring raw data (e.g., pictures or video clips) between publisher and workers requires the remote platform center to serve as a relay node, which implies network congestion. First, we use a reward-penalty model to align the incentives of stakeholders. Then the predefined rules are implemented using blockchain smart contract on many edge servers (ES) of the mobile edge computing network, which together function as a trustless hybrid human-machine crowd-intelligence platform. As ES are near to workers and publisher, network congestion can be effectively improved. Further, we proved the existence of the only one strong Nash equilibrium, which can maximize the interests of involved ES and make the ecosystem bigger. Theoretical analysis and experiments validate the proposed method, respectively.
【Keywords】Blockchain smart contract; crowd-intelligence ecosystem; hybrid human-machine; mobile edge computing; reward and penalty; strong Nash equilibrium; trustless
【发表时间】2019 JUN
【收录时间】2022-01-02
【文献类型】
【主题类别】
--
【DOI】 10.1109/TII.2019.2896965
评论