Publish/Subscribe Method for Real-Time Data Processing in Massive IoT Leveraging Blockchain for Secured Storage
【Author】 Ataei, Mohammadhossein; Eghmazi, Ali; Shakerian, Ali; Landry Jr, Rene; Chevrette, Guy
【Source】SENSORS
【影响因子】3.847
【Abstract】In the Internet of Things (IoT) era, the surge in Machine-Type Devices (MTDs) has introduced Massive IoT (MIoT), opening new horizons in the world of connected devices. However, such proliferation presents challenges, especially in storing and analyzing massive, heterogeneous data streams in real time. In order to manage Massive IoT data streams, we utilize analytical database software such as Apache Druid version 28.0.0 that excels in real-time data processing. Our approach relies on a publish/subscribe mechanism, where device-generated data are relayed to a dedicated broker, effectively functioning as a separate server. This broker enables any application to subscribe to the dataset, promoting a dynamic and responsive data ecosystem. At the core of our data transmission infrastructure lies Apache Kafka version 3.6.1, renowned for its exceptional data flow management performance. Kafka efficiently bridges the gap between MIoT sensors and brokers, enabling parallel clusters of brokers that lead to more scalability. In our pursuit of uninterrupted connectivity, we incorporate a fail-safe mechanism with two Software-Defined Radios (SDR) called Nutaq PicoLTE Release 1.5 within our model. This strategic redundancy enhances data transmission availability, safeguarding against connectivity disruptions. Furthermore, to enhance the data repository security, we utilize blockchain technology, specifically Hyperledger Fabric, known for its high-performance attributes, ensuring data integrity, immutability, and security. Our latency results demonstrate that our platform effectively reduces latency for 100,000 devices, qualifying as an MIoT, to less than 25 milliseconds. Furthermore, our findings on blockchain performance underscore our model as a secure platform, achieving over 800 Transactions Per Second in a dataset comprising 14,000 transactions, thereby demonstrating its high efficiency.
【Keywords】Massive Internet of Things (MIoT); publish/subscribe methodology; real-time data processing; Apache Kafka; Apache Druid; latency; Hyperledger Fabric; storage security
【发表时间】2023 DEC
【收录时间】2024-01-12
【文献类型】理论模型
【主题类别】
区块链应用-实体经济-物联网
【DOI】 10.3390/s23249692
评论