Scheduling and Securing Drone Charging System Using Particle Swarm Optimization and Blockchain Technology
【Author】 Torky, Mohamed; El-Dosuky, Mohamed; Goda, Essam; Snasel, Vaclav; Hassanien, Aboul Ella
【Source】DRONES
【影响因子】5.532
【Abstract】Unmanned aerial vehicles (UAVs) have emerged as a powerful technology for introducing untraditional solutions to many challenges in non-military fields and industrial applications in the next few years. However, the limitations of a drone's battery and the available optimal charging techniques represent a significant challenge in using UAVs on a large scale. This problem means UAVs are unable to fly for a long time; hence, drones' services fail dramatically. Due to this challenge, optimizing the scheduling of drone charging may be an unusual solution to drones' battery problems. Moreover, authenticating drones and verifying their charging transactions with charging stations is an essential associated problem. This paper proposes a scheduling and secure drone charging system in response to these challenges. The proposed system was simulated on a generated dataset consisting of 300 drones and 50 charging station points to evaluate its performance. The optimization of the proposed scheduling methodology was based on the particle swarm optimization (PSO) algorithm and game theory-based auction model. In addition, authenticating and verifying drone charging transactions were executed using a proposed blockchain protocol. The optimization and scheduling results showed the PSO algorithm's efficiency in optimizing drone routes and preventing drone collisions during charging flights with low error rates with an MAE = 0.0017 and an MSE = 0.0159. Moreover, the investigation to authenticate and verify the drone charging transactions showed the efficiency of the proposed blockchain protocol while simulating the proposed system on the Ethereum platform. The obtained results clarified the efficiency of the proposed blockchain protocol in executing drone charging transactions within a short time and low latency within an average of 0.34 s based on blockchain performance metrics. Moreover, the proposed scheduling methodology achieved a 96.8% success rate of drone charging cases, while only 3.2% of drones failed to charge after three scheduling rounds.
【Keywords】blockchain technology; unmanned aerial vehicles (UAVs); drone scheduling; drone authentication; particle swarm optimization (PSO)
【发表时间】2022 SEP
【收录时间】2022-10-02
【文献类型】实证数据
【主题类别】
区块链应用-实体经济-无人机
【DOI】 10.3390/drones6090237
评论