MP-GCN: A Phishing Nodes Detection Approach via Graph Convolution Network for Ethereum
【Author】 Yu, Tong; Chen, Xiaming; Xu, Zhuo; Xu, Jianlong
【Source】APPLIED SCIENCES-BASEL
【影响因子】2.838
【Abstract】Blockchain is making a big impact in various applications, but it is also attracting a variety of cybercrimes. In blockchain, phishing transfers the victim's virtual currency to make huge profits through fraud, which poses a threat to the blockchain ecosystem. To avoid greater losses, Ethereum, one of the blockchain platforms, can provide information to detect phishing fraud. In this study, to effectively detect phishing nodes, we propose a phishing node detection approach as message passing based graph convolution network. We first form a transaction network through the transaction records of Ethereum and then extract the information of nodes effectively via message passing. Finally, we use a graph convolution network to classify the normal and phishing nodes. Experiments show that our method is effective and superior to other existing methods.
【Keywords】graph convolution network; Ethereum; phishing fraud; message passing
【发表时间】2022 JUL
【收录时间】2022-08-15
【文献类型】实验仿真
【主题类别】
区块链治理-技术治理-异常/非法交易识别
wangjiaxin
这篇关于异常交易检测,https://doi.org/10.3390/app12147294,发表在《APPLIED SCIENCES-BASEL》,本文提出了一种基于消息传递的图卷积网络的网络钓鱼节点检测方法:首先通过以太坊的交易记录形成交易网络,然后通过消息传递有效提取节点信息。最后,利用图卷积网络对正常节点和网络钓鱼节点进行分类。
回复