Blockchain-based decentralized energy management platform for residential distributed energy resources in a virtual power plant
【Author】 Yang, Qing; Wang, Hao; Wang, Taotao; Zhang, Shengli; Wu, Xiaoxiao; Wang, Hui
【Source】APPLIED ENERGY
【影响因子】11.446
【Abstract】The advent of distributed energy resources (DERs), such as distributed renewables, energy storage, electric vehicles, and controllable loads, brings a significantly disruptive and transformational impact on the centralized power system. It is widely accepted that a paradigm shift to a decentralized power system with bidirectional power flow is necessary to the integration of DERs. The virtual power plant (VPP) emerges as a promising paradigm for managing DERs to participate in the power system. In this paper, we develop a blockchain-based VPP energy management platform to facilitate a rich set of transactive energy activities among residential users with renewables, energy storage, and flexible loads in a VPP. Specifically, users can interact with each other to trade energy for mutual benefits and provide network services, such as feed-in energy, reserve, and demand response, through the VPP. To respect the users' independence and preserve their privacy, we design a decentralized optimization algorithm to optimize the users' energy scheduling, energy trading, and network services. Then we develop a prototype blockchain network for VPP energy management and implement the proposed algorithm on the blockchain network. By experiments using real-world data trace, we validated the feasibility and effectiveness of our algorithm and the blockchain system. The simulation results demonstrate that our blockchain-based VPP energy management platform reduces the users' cost by up to 38.6% and reduces the overall system cost by 11.2%.
【Keywords】Smart grid; Virtual power plant (VPP); Distributed energy resource (DER); Energy management; Distributed optimization; Blockchain
【发表时间】2021 44757
【收录时间】2022-01-02
【文献类型】
【主题类别】
--
评论