Secure decision tree twin support vector machine training and classification process for encrypted IoT data via blockchain platform
【Author】 Dey, Prasanjit; Chaulya, Swades Kumar; Kumar, Sanjay
【Source】CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE
【影响因子】1.831
【Abstract】A secure decision tree twin support vector machine (DT-TSVM) multi-classification algorithm has been proposed in this paper for improving the reliability and security of the collected IoT data from multiple data providers. The multiclass secure DT-TSVM algorithm has been employed to train a machine learning model using the encrypted training dataset. The training dataset is collected via a blockchain platform. A blockchain method has been adopted to construct a secure and reliable distributed platform among dataset providers. The Paillier homomorphic cryptosystem has been applied for encrypting the IoT dataset. Then, the dataset has been recorded on the distributed ledger. The secure DT-TSVM algorithm's-based train model effectiveness has been compared with the other two available algorithms, namely the multiclass binary support vector machine (MBSVM) and one-to-one SVM algorithms. The experiment results showed that the privacy-preserving multiclass secure DT-TSVM-based model did not reduce the accuracy, but it increased the average precision and recall by 0.53% and 0.44% than MBSVM and 0.82% and 0.71% than one-to-one SVM, respectively. Further, the time consumption of data providers and data analysts did not change significantly with the increase of number of data provider.
【Keywords】blockchain; IoT; machine learning; Paillier homomorphic cryptosystem; secure DT‐ TSVM
【发表时间】2021 44798
【收录时间】2022-01-02
【文献类型】
【主题类别】
--
【DOI】 10.1002/cpe.6264
评论