• 首页
  • 每日更新
  • 文献
  • 会议文献
  • 政策法规
  • 研究专题
  • 区块链游戏
logo 区块链前沿
  • 区块链前沿
  • 首页
  • 每日更新
  • 文献
  • 会议文献
  • 政策法规
  • 研究专题
  • 区块链游戏
  • 文章创新角色
  • 科研创新指数
  • 区块链领域本体
  • 热点主题挖掘
  • 主题展示
  • 专利文献
  • 排行榜
  • DAO治理
  • 文献上传
  • 积分获取规则
  • 大语言模型解析
  • 期刊发文分布
注册 登录

2023年07月10日 27篇

文献来源

  • 14
  • 13

主题分类

      • 23
      • 1
      • 1
      • 1
      • 1

文献类型

  • 23
  • 2
  • 2
筛选
订阅
<< 前一天 后一天 >>

Blockchain-Based Access and Timeliness Control for Administrative Punishment Market Supervision

【Author】 He, Yajie Jiang, Renkai Ni, Xiaoze Xu, Shubin Chen, Ting Feng, Jian

CCF-C

【影响因子】10.238

【主题类别】

--

【Abstract】Administrative punishment is one of the most important ways of enforcing administrative law in the field of market supervision in China. However, at the current stage, the abuse of data access permission and the difficulty in managing timeliness in administrative punishment still remain unresolved, which hinders the legalization and standardization of the administrative punishment system. Inspired by blockchain, which is inherently traceable, tamper-proof, and transparent, we design a system, punishment supervisor (PEATS), which is suitable for administrative punishment and technically overcomes the defects of the traditional administrative punishment procedure. To prevent the abuse of data access permission, we innovatively introduce the authorization control gateway (ACG) to verify the access permission of users based on the records in the market supervision department (MSD) contract. To ensure the timeliness of the administrative punishment procedure, we design a special case contract that has the same status as the general case processing state of administrative punishment to track case progress on the blockchain. We experiment and evaluate PEATS in terms of functionality and performance and find that PEATS provides traceability, transparency, and timeliness assurance. In addition, PEATS has 80.9% of the throughput of a traditional server with no more than an additional 3% latency and at most 60 kB additional storage space per case.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】Blockchains; Law; Smart contracts; Internet of Things; Personnel; Logic gates; Regulation; Administrative punishment; blockchain; market supervision; smart contract

【发表时间】2023

【收录时间】2023-07-10

【文献类型】

【DOI】 10.1109/JIOT.2023.3264805

Exploring the Darkverse: A Multi-Perspective Analysis of the Negative Societal Impacts of the Metaverse

【Author】 Dwivedi, Yogesh K. Kshetri, Nir Hughes, Laurie Rana, Nripendra P. Baabdullah, Abdullah M. Kar, Arpan Kumar Koohang, Alex Ribeiro-Navarrete, Samuel Belei, Nina Balakrishnan, Janarthanan Basu, Sriparna Behl, Abhishek Davies, Gareth H. Dutot, Vincent Dwivedi, Rohita Evans, Leighton Felix, Reto Foster-Fletcher, Richard Giannakis, Mihalis Gupta, Ashish Hinsch, Chris Jain, Animesh Patel, Nina Jane Jung, Timothy Juneja, Satinder Kamran, Qeis Mohamed, A. B. Sanjar Pandey, Neeraj Papagiannidis, Savvas Raman, Ramakrishnan Rauschnabel, Philipp A. Tak, Preeti Taylor, Alexandra Dieck, M. Claudia Tom Viglia, Giampaolo Wang, Yichuan Yan, Meiyi

【影响因子】5.261

【主题类别】

--

【Abstract】The Metaverse has the potential to form the next pervasive computing archetype that can transform many aspects of work and life at a societal level. Despite the many forecasted benefits from the metaverse, its negative outcomes have remained relatively unexplored with the majority of views grounded on logical thoughts derived from prior data points linked with similar technologies, somewhat lacking academic and expert perspective. This study responds to the dark side perspectives through informed and multifaceted narratives provided by invited leading academics and experts from diverse disciplinary backgrounds. The metaverse dark side perspectives covered include: technological and consumer vulnerability, privacy, and diminished reality, human-computer interface, identity theft, invasive advertising, misinformation, propaganda, phishing, financial crimes, terrorist activities, abuse, pornography, social inclusion, mental health, sexual harassment and metaverse-triggered unintended consequences. The paper concludes with a synthesis of common themes, formulating propositions, and presenting implications for practice and policy.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】Dark side of the metaverse; Metaverse; Negative consequences; Second life; Unintended consequences; Virtual reality; Virtual world

【发表时间】2023

【收录时间】2023-07-10

【文献类型】

【DOI】 10.1007/s10796-023-10400-x

Construction of rice supply chain supervision model driven by blockchain smart contract

【Author】 Peng, Xiangzhen Zhang, Xin Wang, Xiaoyi Li, Haisheng Xu, Jiping Zhao, Zhiyao

【影响因子】4.996

【主题类别】

--

【Abstract】The outbreak of the COVID-19 and the Russia Ukraine war has had a great impact on the rice supply chain. Compared with other grain supply chains, rice supply chain has more complex structure and data. Using digital means to realize the dynamic supervision of rice supply chain is helpful to ensure the quality and safety of rice. This study aimed to build a dynamic supervision model suited to the circulation characteristics of the rice supply chain and implement contractualization, analysis, and verification. First, based on an analysis of key information in the supervision of the rice supply chain, we built a dynamic supervision model framework based on blockchain and smart contracts. Second, under the logical framework of a regulatory model, we custom designed three types of smart contracts: initialization smart contract, model-verification smart contract, and credit-evaluation smart contract. To implement the model, we combined an asymmetric encryption algorithm, virtual regret minimization algorithm, and multisource heterogeneous fusion algorithm. We then analyzed the feasibility of the algorithm and the model operation process. Finally, based on the dynamic supervision model and smart contract, a prototype system is designed for example verification. The results showed that the dynamic supervision model and prototype system could achieve the real-time management of the rice supply chain in terms of business information, hazard information, and personnel information. It could also achieve dynamic and credible supervision of the rice supply chain ' s entire life cycle at the information level. This new research is to apply information technology to the digital management of grain supply chain. It can strengthen the digital supervision of the agricultural product industry.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】

【发表时间】2022

【收录时间】2023-07-10

【文献类型】

【DOI】 10.1038/s41598-022-25559-7

COVID-19 and information flow between cryptocurrencies, and conventional financial assets

【Author】 Assaf, Ata Mokni, Khaled Youssef, Manel

【影响因子】4.324

【主题类别】

区块链治理-市场治理-市场分析

【Abstract】In this paper, we analyze the impact of the ongoing COVID-19 pandemic on the information flow among the main cryptocurrencies (Bitcoin, Ethereum, Ripple, and Litecoin) and those of the fear index (VIX), Gold price, and the US equity market (S&P500). We use the transfer entropy measure to determine the in-formation flow by allowing for nonlinear dynamics and extreme tail values in the series. Our results indicate that information flow and sharing have changed during the COVID-19 pandemic with the following main findings: i) cryptocurrencies show more correlation with VIX, Gold, and the US equity markets during the COVID-19 period; ii) Gold and VIX maintain their position as safe hedging tools against the pandemic; iii) during COVID-19, S&P500 is the dominant flow transmitter to the four cryptocurrencies, and iv) Ripple plays the dominant role of information flow to VIX, Gold, and S & P500.(c) 2023 Board of Trustees of the University of Illinois. Published by Elsevier Inc. All rights reserved.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】Cryptocurrencies; COVID-19; VIX; S& P500; Gold price; Transfer entropy

【发表时间】2023

【收录时间】2023-07-10

【文献类型】 实证数据

【DOI】 10.1016/j.qref.2023.02.010

A dependable and secure consensus algorithm for blockchain assisted microservice architecture

【Author】 Ahmed, Mohiuddin Akhter, A. F. M. Suaib Rashid, A. N. M. Bazlur Pathan, Al-Sakib Khan

【影响因子】4.152

【主题类别】

--

【Abstract】One of the integral components in the architectural design and development of Internet of Things (IoT) is Microservice. Microservices are basically an architectural and organizational approach in the process of software development where the software is composed of small but independent services that would communicate over well-defined APIs (Application Program-ming Interfaces). It is quite challenging to ensure data integrity and data availability in the architecture design of microservices. As Blockchain technology has emerged as a panacea to many of the other domains, the distributed microservice architecture can also utilize it. We know that the consensus algorithms are used in the Blockchain technology to validate the transactions alongside providing extra level of security. Taking the advantage of consensus algorithms in blockchain-based architecture models, in this paper, we propose TCA (Trustworthy Consensus Algorithm), which is designed to solve the data integrity and availability challenges in microservice architectures. We have evaluated the proposed algorithm against the known alternatives and it shows good level of efficiency.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】Blockchain; Microservices; Consensus algorithm; False data injection attacks; Internet of everything

【发表时间】2023

【收录时间】2023-07-10

【文献类型】

【DOI】 10.1016/j.compeleceng.2023.108762

Game-o-Meta: Trusted Federated Learning Scheme for P2P Gaming Metaverse beyond 5G Networks

【Author】 Bhattacharya, Pronaya Verma, Ashwin Prasad, Vivek Kumar Tanwar, Sudeep Bhushan, Bharat Florea, Bogdan Cristian Taralunga, Dragos Daniel Alqahtani, Fayez Tolba, Amr

【影响因子】3.847

【主题类别】

--

【Abstract】The aim of the peer-to-peer (P2P) decentralized gaming industry has shifted towards realistic gaming environment (GE) support for game players (GPs). Recent innovations in the metaverse have motivated the gaming industry to look beyond augmented reality and virtual reality engines, which improve the reality of virtual game worlds. In gaming metaverses (GMs), GPs can play, socialize, and trade virtual objects in the GE. On game servers (GSs), the collected GM data are analyzed by artificial intelligence models to personalize the GE according to the GP. However, communication with GSs suffers from high-end latency, bandwidth concerns, and issues regarding the security and privacy of GP data, which pose a severe threat to the emerging GM landscape. Thus, we proposed a scheme, Game-o-Meta, that integrates federated learning in the GE, with GP data being trained on local devices only. We envisioned the GE over a sixth-generation tactile internet service to address the bandwidth and latency issues and assure real-time haptic control. In the GM, the GP's game tasks are collected and trained on the GS, and then a pre-trained model is downloaded by the GP, which is trained using local data. The proposed scheme was compared against traditional schemes based on parameters such as GP task offloading, GP avatar rendering latency, and GS availability. The results indicated the viability of the proposed scheme.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】P2P gaming; federated learning; metaverse; federated averaging; 5G

【发表时间】2023

【收录时间】2023-07-10

【文献类型】

【DOI】 10.3390/s23094201

A trusted peer-to-peer market of joint energy and reserve based on blockchain

【Author】 Ping, Jian Li, Da Yan, Zheng Wu, Xiaowen Chen, Sijie

【影响因子】3.818

【主题类别】

--

【Abstract】With the increasing penetration of distributed energy resources, the traditional producer-centric electricity market is moving to a prosumer-centric market, where prosumers can trade with each other in an autonomous pattern. However, there remain research gaps on the pricing and allocation of joint energy and reserves in an autonomous prosumer-centric market. This paper firstly designs a joint energy-reserve peer-to-peer (P2P) trading mechanism. The mechanism not only enables P2P energy trading but also quantifies the reserve cost and the value of flexibility. Then, a blockchain-based trading algorithm is proposed to implement a trustworthy prosumer-centric market. A pipelined delegated Byzantine fault tolerance (PDBFT) consensus algorithm is proposed to ensure robustness and improve the efficiency of the autonomous trading process. Numerical results show the effectiveness of the trading mechanism and the performance of the blockchain-based trading algorithm. Compared with only considering energy trading, the proposed mechanism reduces the total cost of the market by 16.03%. Compared with using the traditional practical Byzantine fault tolerance (PBFT) consensus algorithm, the computational time of market clearing on blockchain is decreased by 45.90%.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】Peer-to-peer market; Blockchain; Consensus algorithm; Distributed optimization

【发表时间】2023

【收录时间】2023-07-10

【文献类型】

【DOI】 10.1016/j.epsr.2022.108802

Blockchain Assisted Data Edge Verification With Consensus Algorithm for Machine Learning Assisted IoT

【Author】 Vaiyapuri, Thavavel Shankar, K. Rajendran, Surendran Kumar, Sachin Acharya, Srijana Kim, Hyunil

【影响因子】3.476

【主题类别】

--

【Abstract】Internet of Things (IoT) devices are becoming increasingly ubiquitous in daily life. They are utilized in various sectors like healthcare, manufacturing, and transportation. The main challenges related to IoT devices are the potential for faults to occur and their reliability. In classical IoT fault detection, the client device must upload raw information to the central server for the training model, which can reveal sensitive business information. Blockchain (BC) technology and a fault detection algorithm are applied to overcome these challenges. Generally, the fusion of BC technology and fault detection algorithms can give a secure and more reliable IoT ecosystem. Therefore, this study develops a new Blockchain Assisted Data Edge Verification with Consensus Algorithm for Machine Learning (BDEV-CAML) technique for IoT Fault Detection purposes. The presented BDEV-CAML technique integrates the benefits of blockchain, IoT, and ML models to enhance the IoT network's trustworthiness, efficacy, and security. In BC technology, IoT devices that possess a significant level of decentralized decision-making capability can attain a consensus on the efficiency of intrablock transactions. For fault detection in the IoT network, the deep directional gated recurrent unit (DBiGRU) model is used. Finally, the African vulture optimization algorithm (AVOA) technique is utilized for the optimal hyperparameter tuning of the DBiGRU model, which helps in improving the fault detection rate. A detailed set of experiments were carried out to highlight the enhanced performance of the BDEV-CAML algorithm. The comprehensive experimental results stated the improved performance of the BDEV-CAML technique over other existing models with maximum accuracy of 99.6%.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】Internet of Things; Fault detection; Logic gates; Blockchains; Security; Tuning; Consensus algorithm; Blockchain; consensus algorithm; fault detection; deep learning; hyperparameter tuning

【发表时间】2023

【收录时间】2023-07-10

【文献类型】

【DOI】 10.1109/ACCESS.2023.3280798

An Elitist Artificial Electric Field Algorithm Based Random Vector Functional Link Network for Cryptocurrency Prices Forecasting

【Author】 Nayak, Sarat Chandra Das, Subhranginee Dehuri, Satchidananda Cho, Sung-Bae

【影响因子】3.476

【主题类别】

--

【Abstract】Cryptocurrencies have carved out a significant presence in financial transactions during the past few years. Cryptocurrency market performs similarly to other financial markets with considerable nonlinearity and volatility and its prediction is a growing research area. It is challenging to capture the inherent uncertainties connected with cryptocurrency using the currently used conventional methodologies. The popularity of random vector functional link networks (RVFLN) is attributed to its simple structural layout, quick rate of learning, and enhanced generalization ability. It computes the output layer weights using non-iterative techniques like least square methods or iterative techniques like gradient methods, and assigns hidden neuron parameters at random. Random initialization of non-optimal hidden neuron settings, however, degrades the performance. Population-based metaheuristics are a superior option to random initialization for determining the ideal parameters and avoiding the problem of local optima stagnation. In the current article, an elitist artificial electric field algorithm (eAEFA) for training RVFLN is proposed. Here, eAEFA is utilized to create an ideal RVFLN by determining the weights and biases of the hidden layer connections. The elitism method is used by AEFA to maximize its strength. Here, the most suitable entities are directly inserted to create the population of the following generation. By predicting the closing values of six widely used cryptocurrencies, including Bitcoin, Litecoin, Ethereum, ZEC, XLM, and Ripple, one may determine how well the eAEFA+RVFLN model is performing. For comparison study, models including ARIMA, multi-layer perceptron (MLP), basic RVFLN, support vector regression (SVR), LSTM, GA trained RVFLN, and AEFA trained RVFLN are also constructed concurrently. In terms of performance and statistical significance testing, the suggested eAEFA+RVFLN findings outperform the comparator models. On an average, it achieves a MAPE (mean absolute percentage of error) value of 0.0573, R-2 (coefficient of determination) of 0.9589, POCID (prediction of change in direction) of 0.9676, RMSE (root mean squared error) of 0.0685, MAE (mean absolute error) of 0.0727 and an average rank of 1.346; as a result, it is possible to recommend it as a useful financial forecasting tool.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】Computational efficiency; Cryptocurrency; bitcoin; random vector functional link network; financial time series forecasting; artificial neural network; AEFA

【发表时间】2023

【收录时间】2023-07-10

【文献类型】

【DOI】 10.1109/ACCESS.2023.3283571

Phishing Node Detection in Ethereum Transaction Network Using Graph Convolutional Networks

【Author】 Zhang, Zhen He, Tao Chen, Kai Zhang, Boshen Wang, Qiuhua Yuan, Lifeng

【影响因子】2.838

【主题类别】

区块链治理-技术治理-异常/非法交易识别

【Abstract】As the use of digital currencies, such as cryptocurrencies, increases in popularity, phishing scams and other cybercriminal activities on blockchain platforms (e.g., Ethereum) have also risen. Current methods of detecting phishing in Ethereum focus mainly on the transaction features and local network structure. However, these methods fail to account for the complexity of interactions between edges and the handling of large graphs. Additionally, these methods face significant issues due to the limited number of positive labels available. Given this, we propose a scheme that we refer to as the Bagging Multiedge Graph Convolutional Network to detect phishing scams on Ethereum. First, we extract the features from transactions and transform the complex Ethereum transaction network into three simple inter-node graphs. Then, we use graph convolution to generate node embeddings that leverage the global structural information of the inter-node graphs. Further, we apply the bagging strategy to overcome the issues of data imbalance and the Positive Unlabeled (PU) problem in transaction data. Finally, to evaluate our approach's effectiveness, we conduct experiments using actual transaction data. The results demonstrate that our Bagging Multiedge Graph Convolutional Network (0.877 AUC) outperforms all of the baseline classification methods in detecting phishing scams on Ethereum.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】phishing node detection; Ethereum; graph convolutional network; node classification; transaction network

【发表时间】2023

【收录时间】2023-07-10

【文献类型】 实证数据

【DOI】 10.3390/app13116430

A Stochastic Analysis of the Effect of Trading Parameters on the Stability of the Financial Markets Using a Bayesian Approach

【Author】 Rubilar-Torrealba, Rolando Chahuan-Jimenez, Karime de la Fuente-Mella, Hanns

【影响因子】2.592

【主题类别】

--

【Abstract】The purpose of this study was to identify and measure the impact of the different effects of entropy states over the high-frequency trade of the cryptocurrency market, especially in Bitcoin, using and selecting optimal parameters of the Bayesian approach, specifically through approximate Bayesian computation (ABC). ABC corresponds to a class of computational methods rooted in Bayesian statistics that could be used to estimate the posterior distributions of model parameters. For this research, ABC was applied to estimate the daily prices of the Bitcoin cryptocurrency from May 2013 to December 2021. The findings suggest that the behaviour of the parameters for our tested trading algorithms, in which sudden jumps are observed, can be interpreted as changes in states of the generated time series. Additionally, it is possible to identify and model the effects of the COVID-19 pandemic on the series analysed in the research. Finally, the main contribution of this research is that we have characterised the relationship between entropy and the evolution of parameters defining the optimal selection of trading algorithms in the financial industry.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】cryptocurrencies; econometric models; stochastic processes; Bayesian analysis; market efficiency; entropy

【发表时间】2023

【收录时间】2023-07-10

【文献类型】

【DOI】 10.3390/math11112527

The Use of Metaverse in Nursing Education An Umbrella Review

【Author】 De Gagne, Jennie C. Randall, Paige S. Rushton, Sharron Park, Hyeyoung K. K. Cho, Eunji Yamane, Sandra S. Jung, Dukyoo

【影响因子】2.518

【主题类别】

--

【Abstract】Background:Given the wide range of metaverse technologies, there is a need to synthesize evidence of metaverse pedagogy used effectively for nursing education. Purpose:This umbrella review synthesized systematic reviews on the use of metaverse in nursing education. Methods:A search was performed in MEDLINE, EMBASE, CINAHL, Web of Science, and Education Full Text. This umbrella review was conducted with reference to the Joanna Briggs Institute (JBI) Reviewer's Manual and reported using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The JBI Critical Appraisal Checklist for Systematic Review was used to assess the quality of studies. Results:The final review comprised 15 articles published between 2013 and 2021, most of which indicate that metaverse interventions support increased knowledge, self-confidence, engagement, satisfaction, and performance in nursing students. Several articles in this review presented mixed findings related to certain learning outcomes. Conclusion:This umbrella review supports the viability and effectiveness of metaverse in nursing education.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】augmented reality; metaverse; nursing education; simulation; virtual reality

【发表时间】2023

【收录时间】2023-07-10

【文献类型】

【DOI】 10.1097/NNE.0000000000001327

Cryptoterrorism: Assessing the Utility of Blockchain Technologies for Terrorist Enterprise

【Author】 Whyte, Christopher

【影响因子】1.960

【主题类别】

区块链治理-市场治理-欺诈犯罪

【Abstract】Much recent policy discourse has pivoted on the relationship between terrorist campaigns and an emergent feature of the global financial landscape in the form of cryptocurrencies. Cryptocurrencies are a subset of digital currencies that are distributed by the developers thereof. The various unique features of cryptocurrencies have led to discussion in punditry about how terrorists could benefit from this new mode of financial transaction but few policy-oriented works and scholarly assessments exist to outline and assess this claim. This article describes cryptocurrencies, and assesses them in line with the operational realities of terrorist campaigns. I argue that, while there is limited evidence that terrorists are likely to disproportionately benefit from use of cryptocurrencies at present, there do exist unique opportunities for money laundering and revenue generation.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】

【发表时间】2023

【收录时间】2023-07-10

【文献类型】 观点阐述

【DOI】 10.1080/1057610X.2018.1531565

Social, Political, and Economic Dimensions of the Instituted Process of Central Bank Digital Currency: The Case of the Digital Yuan

【Author】 Siu, Ricardo C. S.

【影响因子】0.854

【主题类别】

区块链治理-市场治理-数字货币

【Abstract】Inspired by Karl Polanyi's argument that the institution of money offers an essential insight into the economy as an instituted process, I examine the extent to which the recent proposals presented in various countries to formulate their central bank digital currencies (CBDCs) actually represent the reactions of governments to the new development paths of their respective society in the digital age. To illustrate this, I scrutinize the particular social, political and economic dimensions of the instituted process which have led to the launch of the digital yuan by the Chinese government in 2021. I also argue that the formulation of the digital yuan is specific to the particular contextual settings of China and their progress. Finally, I argue that the evolving role and long-term influence of the digital yuan in a global context is largely subject to the competition of the world's major upcoming CBDCs like the U.S. dollar and euro.

你可以尝试使用大模型来生成摘要 立即生成

【Keywords】central bank digital currency; digital yuan; instituted process; private digital currency; digital fait currency

【发表时间】2023

【收录时间】2023-07-10

【文献类型】 观点阐述

【DOI】 10.1080/00213624.2023.2201610

基于分布式异常检测的电网区块链安全防护方案

【作者】 王栋;张显;李达;郭庆雷;常新;冯景丽;

【作者单位】国网数字科技控股有限公司(国网雄安金融科技集团有限公司);国网区块链技术实验室;北京电力交易中心有限公司;国网区块链科技(北京)有限公司;

【文献来源】计算机应用

【复合影响因子】2.197

【综合影响因子】1.475

【主题类别】

--

【摘要】区块链具有去中心化、可追溯和不可篡改等特点,与智能电网的设计需求相契合。虽然区块链为电力交易账本及操作提供了强大的加密保护,但底层的区块链网络仍然容易受到潜在攻击行为的威胁。为了进一步了解电网区块链网络生态的潜在运行规律,提升电网区块链网络针对非法交易行为及已知甚至未知攻击行为的安全防护能力,设计了一种基于实时数据分布式异常检测的电网区块链安全防护方案,将深度学习模型与区块链技术相结合,实时收集区块链网络中的多维度运行数据,并利用数据降维技术对所收集的多维样本数据进行数据特征降维;基于深度学习的异常检测技术构建电网区块链网络数据预测模型的分布式应用架构,通过超参数搜索方法多轮优化预测模型;将已降维样本数据通过预测模型,输出对应输入序列的时序预测结果,并将预测结果与实时数据通过分类器判定,对于判定结果为异常的节点进行访问控制权限限制,以达到安全防护目的。

【关键词】区块链;;异常检测;;安全防护;;电力网络;;深度学习

【文献类型】

【DOI】

【发表时间】2023-07-10

车联网区块链吞吐量优化的深度强化学习方法研究

【作者】 张立;段明达;万剑雄;李雷孝;刘楚仪;

【作者单位】内蒙古自治区气象信息中心;内蒙古工业大学;内蒙古自治区基于大数据的软件服务工程技术研究中心;

【文献来源】计算机科学与探索

【复合影响因子】

【综合影响因子】

【主题类别】

--

【摘要】区块链应用于车联网(IoV)可以有效解决车联网数据安全和隐私等问题。但是,区块链吞吐量低的问题阻碍了其在车联网中的广泛应用。已有的区块链吞吐量优化研究大都存在决策行为空间爆炸的问题,可扩展性较差。针对上述问题,提出了一种基于深度强化学习(DRL)的区块链车联网吞吐量优化方法,通过选择区块生产者和共识算法,调整区块大小和区块间隔优化区块链的吞吐量,同时保证IoV区块链的去中心化、延迟和安全性。该方法通过引入BDQ框架将行为空间进行细粒度划分,解决了区块链使用传统深度强化学习方法对吞吐量进行优化时出现的行为空间爆炸问题。仿真结果表明,提出的方法可以有效地提高IoV区块链系统的吞吐量。

【关键词】车联网(IoV);;区块链;;吞吐量;;深度强化学习(DRL)

【文献类型】

【DOI】

【发表时间】2023-07-10

区块链赋能的粤港澳大湾区跨境税务监管框架

【作者】 陶晓慧;周梓勋;张子悦;方俊彬;

【作者单位】暨南大学;

【文献来源】地方财政研究

【复合影响因子】

【综合影响因子】

【主题类别】

--

【摘要】粤港澳大湾区内差异化的税收环境、税收规则与低效的争端解决机制,未能及时适应数字经济与跨境贸易的快速发展,阻碍了粤港澳大湾区的高质量协同运转。区块链的去中心化、数据共享、不可篡改等特性,决定了区块链技术天然具有促进协同合作的功能。本文基于粤港澳大湾区“一国两制三税区”的独特背景,通过梳理大湾区跨境税务监管的现状和问题,分析区块链与跨境税务监管的契合性,进而提出基于区块链的跨境税务监管框架,以实现大湾区内涉税数据共享、推动监管智能化进程以及涉税争端解决机制的变革。

【关键词】区块链;;税务监管;;粤港澳大湾区;;跨境

【文献类型】

【DOI】

【发表时间】2023-07-10

数字经济背景下数字人民币的发展价值、挑战与路径探索

【作者】 高旭;韦有周;

【作者单位】上海海洋大学;

【文献来源】地方财政研究

【复合影响因子】

【综合影响因子】

【主题类别】

--

【摘要】数字人民币对于维护人民币发行权、保障国家金融安全,深入发展普惠金融、加快人民币国际化进程具有重要价值。2019年以来,我国已开始在部分地区进行数字人民币试点测试。未来在国际货币体系重塑过程中,数字人民币需要克服复杂国际货币环境问题、技术问题、风险问题、法律及制度问题等多重挑战,在国家经济实力不断壮大的同时,通过技术赋能、机制创新、法律与制度创新以及扩大开放合作等举措,提升自身竞争力。

【关键词】数字经济;;数字人民币;;发展价值;;路径探索

【文献类型】

【DOI】

【发表时间】2023-07-10

国内关于数字货币研究的演进与前沿——基于CSSCI文献(2002—2020)科学知识图谱分析

【作者】 陈君;

【作者单位】中国建设银行天津审计分部;

【文献来源】开发性金融研究

【复合影响因子】

【综合影响因子】

【主题类别】

--

【摘要】2008年中本聪发布比特币协议以来,基于区块链技术的数字货币研究也逐渐兴起,但针对数字货币研究的系统性、贯穿性文献相对稀缺。本研究通过刻画国内数字货币研究进展,把握其研究变迁、演进与热点,预测数字货币研究的发展趋势,以期推进其未来发展。本文依托中国知网CNKI数据库,以CSSCI为来源期刊,对数字货币主题相关文献,基于科学知识图谱软件CiteSpace进行文献计量分析,探讨国内数字货币研究的热点问题、演进路径和研究趋势。研究发现:首先,国内数字货币研究进程与中国人民银行对数字货币项目的推动进程和互联网金融发展进程相吻合;其次,国内对数字货币研究问题从前期探索阶段、比特币与区块链技术为主导阶段已演进至法定数字货币为主导阶段;最后,在未来一段时间国内对数字货币研究热点主要分布在对数字货币架构研究、应用场景研究及影响研究,主要表现在法定数字货币研究、金融科技研究、金融监管研究、商业银行转型发展研究与数字货币治理研究等方面。

【关键词】数字货币;;科学知识图谱;;法定数字货币;;金融科技;;监管科技

【文献类型】

【DOI】 10.16556/j.cnki.kfxjr.2023.02.009

【发表时间】2023-07-10

AIGC+Web 3.0:面向未来的出版多模态融合

【作者】 周荣庭;周慎;

【作者单位】中国科学技术大学科学教育与传播省级重点实验室;中国科学技术大学科技传播系;

【文献来源】中国出版

【复合影响因子】

【综合影响因子】

【主题类别】

--

【摘要】随着人工智能生成内容(AIGC)技术的不断突破与能力增强,内容生产关系发生了深刻变化。以间性的视角,从主体间性、文本间性、媒介间性三个维度分析人机协同的内容生产逻辑及智能出版的未来发展。在主体间性上,探讨人工智能、专业内容生产者、职业内容生产者与用户之间的主体关系,同时由于人工智能在内容生产上主体地位的确立导致的主体间性的变化,也引发了新的一对基础文本(basic text)与扩展文本(extended text)的文本间性问题。基于大语言模型的人工智能展现出通用模型的潜力,在媒介间性上赋能跨模态生成与多模态融合。内容生产逻辑的转变为出版研究与实践带来深远影响,面向未来的出版需要在主体间性上积极应对生产主体之间的替代性、协同性与迭代性;在文本间性上聚焦内容生成的IP化与价值实现,将内容生产效率的提高转化为IP形成与价值实现的效率提升;在媒介间性上针对不同人群采用不同的多模态融合策略,抓住技术涌现期,推动“AIGC+Web3.0”的融合出版。

【关键词】人工智能生成内容;;主体间性;;文本间性;;媒介间性;;智能出版

【文献类型】

【DOI】

【发表时间】2023-07-10

基于区块链的数字孪生图书馆管理与服务模式研究

【作者】 王家玲;查道懂;张春梅;

【作者单位】铜陵学院;

【文献来源】新世纪图书馆

【复合影响因子】

【综合影响因子】

【主题类别】

--

【摘要】数字孪生技术在智慧图书馆建设中独具优势,但其中心化存储方式以及孪生体数据可被无限复制等特点给智慧图书馆带来了数据不可靠、读者隐私和知识产权问题。论文梳理数字孪生和区块链技术特点及在智慧图书馆的应用现状,提出将数字孪生与区块链技术深度融合,利用区块链的非中心化、数据不可篡改等特点存储智慧图书馆数字孪生数据,在保证孪生数据可靠性、读者隐私和知识产权安全的前提下,将智慧图书馆的空间资源、设备资源、纸电资源、读者资源、人才资源全局规划、深度整合、智慧管理,探析智慧图书馆的管理与服务新模式,为智慧图书馆的绿色发展提供全新的研究视角和实践路径。

【关键词】区块链;;数字孪生;;智慧图书馆

【文献类型】

【DOI】 10.16810/j.cnki.1672-514X.2023.05.010

【发表时间】2023-07-10

非同质化通证的金融属性及司法认定可能

【作者】 吴一楷;李国安;王健璇;

【作者单位】厦门大学法学院;广东财经大学经济学院;

【文献来源】广东财经大学学报

【复合影响因子】

【综合影响因子】

【主题类别】

--

【摘要】非同质化通证(NFT)作为区块链技术的深化应用,不仅通过技术保障了用户之间的信任效益和数据权利,同时亦构建了区别于传统金融资产的价值体系。以NFT为代表的加密资产在全球市场的业务开展与交易数据不断扩增,全球数字经济与金融治理格局也处在重塑阶段,但域内外对于NFT属性并未作出一致的认定。通过识别NFT与传统金融资产在定价机制、交易模式、风险性等方面的区别,从全球范围内的司法裁判中考察其属性认定在加密资产与金融化之间转换的可能性,指出对于NFT属性的认定需从资产特性、平台模式、持有者要素以及区别于传统金融资产案件认定规则的司法建议等方面加以考虑。

【关键词】NFT;;数字金融;;金融司法;;加密资产;;证券化

【文献类型】

【DOI】

【发表时间】2023-07-10

区块链上无可信拍卖师的密封式竞拍方案

【作者】 刘雪峰;杨丹平;仇卿云;裴庆祺;王朝阳;

【作者单位】西安电子科技大学;陕西省区块链与安全计算省重点实验室;微众银行;

【文献来源】密码学报

【复合影响因子】

【综合影响因子】

【主题类别】

--

【摘要】线上拍卖业务应用日益广泛,其中不公开竞标者报价的密封式拍卖,在实际应用中有确保报价私密性、支持大规模竞拍用户、要求拍卖协议公开公平公正等安全需求.本文提出一种半可信模型可证明安全的比较协议,允许参与方在保护输入数据隐私的同时完成比较操作;采用GMW编译器得到恶意模型安全协议,使得整个比较计算过程公开可验证;结合区块链的可信存储、智能合约的公开执行特性,在恶意模型安全协议基础上设计基于区块链环境的密封式竞拍方案,实现竞标者报价机密性、确保竞拍过程的公开公平公正.计算、通信性能大幅优于其他方案;实际测试大规模竞拍用户数量下的系统可用性,在由4个/8个共识节点构成的区块链环境下,仅需293秒/311秒便能完成128个用户参与的密封式竞拍.

【关键词】区块链;;密封式拍卖;;数据隐私;;可验证;;零知识证明

【文献类型】

【DOI】 10.13868/j.cnki.jcr.000607

【发表时间】2023-07-10

区块链技术在畜牧产品溯源中的研究进展

【作者】 李玉伟;张京京;张航;李守晓;王繁珍;刘同海;

【作者单位】天津农学院计算机与信息工程学院;

【文献来源】家畜生态学报

【复合影响因子】

【综合影响因子】

【主题类别】

--

【摘要】畜牧产品与人们的日常饮食息息相关,拥有开阔的市场前景,但是某些商家打着优质畜牧产品的旗号以次充好。为营造良好的畜牧产品市场,维护食品安全,需要对产品进行有效溯源。区块链凭借其分布式账本、智能合约、密码学、共识机制等技术特性成功应用于溯源体系中,使得溯源体系具有去中心化、防篡改、全民监督、透明性强等优点。该文阐述并分析了畜牧产品在现有溯源中存在的问题以及不足之处,详细分析了区块链溯源技术在畜牧产品溯源中的优势,最后对区块链溯源技术的发展进行了总结和展望,为今后完善基于区块链技术的溯源体系以及畜牧产品安全问题的进一步研究提供参考。

【关键词】区块链技术;;畜牧产品;;食品安全;;溯源

【文献类型】

【DOI】

【发表时间】2023-07-10

智能时代下虚拟环境无障碍的概念界定与实现路径——以元宇宙为例

【作者】 任天宇;姚登峰;叶毓睿;康新晨;

【作者单位】北京市信息服务工程重点实验室(北京联合大学);清华大学人文学院计算语言学实验室;清华大学心理学与认知科学研究中心;高端服务器系统全国重点实验室;元宇宙产业委员会;

【文献来源】残疾人研究

【复合影响因子】

【综合影响因子】

【主题类别】

--

【摘要】随着人工智能、虚拟现实等新技术的快速发展,智能时代的虚拟环境已经成为人们日常生活不可或缺的一部分。然而,对于一些人群,如残障人士,他们可能面临着在虚拟环境中受到限制和障碍的问题。因此,无障碍设计成为了一个迫切需要解决的问题。虚拟环境无障碍是指在虚拟环境中,不仅能够满足普通用户的需求,还需要考虑残障人士的多样化需求,以确保每个用户都能够平等地访问和使用虚拟环境。这需要虚拟环境提供多种交互方式、易于导航的界面、不同设备和平台的兼容性、多种无障碍需求等方面的设计。在实现虚拟环境无障碍的路径上,本文提出了几个建议,例如虚拟环境无障碍设计需要充分考虑多种障碍、考虑不同设备和平台的兼容性、不断推动技术的创新和发展、加强用户体验的测试和评估。实现虚拟环境无障碍需要政府、企业、技术研发人员、残障人士等多方面的合作和努力。只有通过共同的努力和创新,才能让虚拟环境真正地为每个人服务,成为一个包容和开放的数字世界。

【关键词】智能时代;;虚拟环境;;无障碍;;元宇宙

【文献类型】

【DOI】

【发表时间】2023-07-10

区块链技术在生鲜农产品物流营销中的应用研究

【作者】 杨志鹏;谭晓晴;

【作者单位】广州科技职业技术大学经济与管理学院;

【文献来源】无锡商业职业技术学院学报

【复合影响因子】

【综合影响因子】

【主题类别】

--

【摘要】区块链技术在生鲜农产品物流营销中的应用有利于促进生鲜农产品销售。当前,生鲜农产品物流营销中存在消费者可获得数据的真实性难以保证、消费者需求得到满足的速度滞后、消费者承担信息不对称产生的产品溢价、产品数据难追溯等问题。基于区块链的创新特征及其与生鲜农产品流通需求的耦合性,提出运用区块链的数据不可篡改机制保证数据真实性、运用区块链的匿名共享性赋能供应链、运用区块链去中心化的信息存储方式稳定产品价格、运用区块链的可溯源性特点满足消费者安全需求等创新对策,以期将区块链技术与物流营销相结合,深化区块链理论的跨领域运用,进一步推动数字农业发展。

【关键词】区块链;;生鲜农产品;;物流营销

【文献类型】

【DOI】 10.13659/j.cnki.wxsy.2023.03.002

【发表时间】2023-07-10

区块链技术在钢铁行业发展中的应用——评《世界钢铁发展规律认识与国际产能合作》

【作者】 李瑛;赵鹏;张俊花;

【作者单位】太原师范学院计算机科学与技术学院;

【文献来源】中国有色冶金

【复合影响因子】

【综合影响因子】

【主题类别】

--

【摘要】钢铁是现代工业中最重要的基础材料之一,对于现代社会发展和经济繁荣有着至关重要的作用。近年来,钢铁行业的技术水平不断提高,新技术的开发和应用,如绿色钢铁生产,以及智能化、数字化、自动化制造等,可以帮助行业提高生产效率、降低成本、减少排放。钢铁行业是一个全球化的产业,通过对各国钢铁行业的研究,可以了解各个国家的产业政策、技术水平、市场需求等,为企业国际化战略的制定提供参考。由于勇、罗书、王新东等著,冶金工业出版社出版的《世界钢铁发展规律认识与国际产能合作》一书,

【关键词】钢铁行业;物流过程;《世界钢铁发展规律认识与国际产能合作》;区块链技术;国际产能合作;

【文献类型】

【DOI】

【发表时间】2023-07-10

在线标注

备案号: 苏ICP备17025947号-5

评论回复