【Author】 Arachchige, Pathum Chamikara Mahawaga; Bertok, Peter; Khalil, Ibrahim; Liu, Dongxi; Camtepe, Seyit; Atiquzzaman, Mohammed
【Source】IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
【Abstract】Industrial Internet of Things (IIoT) is revolutionizing many leading industries such as energy, agriculture, mining, transportation, and healthcare. IIoT is a major driving force for Industry 4.0, which heavily utilizes machine learning (ML) to capitalize on the massive interconnection and large volumes of IIoT data. However, ML models that are trained on sensitive data tend to leak privacy to adversarial attacks, limiting its full potential in Industry 4.0. This article introduces a framework named PriModChain that enforces privacy and trustworthiness on IIoT data by amalgamating differential privacy, federated ML, Ethereum blockchain, and smart contracts. The feasibility of PriModChain in terms of privacy, security, reliability, safety, and resilience is evaluated using simulations developed in Python with socket programming on a general-purpose computer. We used Ganache_v2.0.1 local test network for the local experiments and Kovan test network for the public blockchain testing. We verify the proposed security protocol using Scyther_v1.1.3 protocol verifier.
【Keywords】Industries; Privacy; Machine learning; Data models; Contracts; Blockchains; differential privacy (DP); ethereum; federated learning (FedML); Industrial Internet of Things (IIoT); Industry 4; 0; IIoT trustworthiness; IPFS; machine learning; smart contract
【标题】工业物联网系统中机器学习的可信赖隐私保护框架
【摘要】工业物联网 (IIoT) 正在彻底改变能源、农业、采矿、交通和医疗保健等许多领先行业。 IIoT 是工业 4.0 的主要驱动力,它大量利用机器学习 (ML) 来利用大规模互连和大量 IIoT 数据。然而,在敏感数据上训练的 ML 模型往往会将隐私泄露给对抗性攻击,从而限制了其在工业 4.0 中的全部潜力。本文介绍了一个名为 PriModChain 的框架,该框架通过合并差分隐私、联合 ML、以太坊区块链和智能合约来强制 IIoT 数据的隐私和可信度。 PriModChain 在隐私、安全、可靠性、安全性和弹性方面的可行性通过使用 Python 开发的模拟和通用计算机上的套接字编程进行评估。我们使用 Ganache_v2.0.1 本地测试网络进行本地实验,使用 Kovan 测试网络进行公共区块链测试。我们使用 Scyther_v1.1.3 协议验证器验证提议的安全协议。
【关键词】行业;隐私;机器学习;数据模型;合同;区块链;差分隐私(DP);以太坊;联邦学习(FedML);工业物联网(IIoT);工业4; 0;工业物联网可信度; IPFS;机器学习;智能合约
【发表时间】2020
【收录时间】2022-07-06
【文献类型】Article
【论文大主题】区块链联邦学习
【论文小主题】两者结合
【影响因子】11.648
【翻译者】石东瑛
评论