【Author】 Posner, Jason; Tseng, Lewis; Aloqaily, Moayad; Jararweh, Yaser
【Source】IEEE NETWORK
【Abstract】The emerging advances in personal devices and privacy concerns have given the rise to the concept of Federated Learning. Federated Learning proves its effectiveness and privacy preservation through collaborative local training and updating a shared machine learning model while protecting the individual data-sets. This article investigates a new type of vehicular network concept, namely a Federated Vehicular Network (FVN), which can be viewed as a robust distributed vehicular network. Compared to traditional vehicular networks, an FVN has centralized components and utilizes both DSRC and mmWave communication to achieve more scalable and stable performance. As a result, FVN can be used to support data-/computation-intensive applications such as distributed machine learning and Federated Learning. The article first outlines the enabling technologies of FVN. Then, we briefly discuss the high-level architecture of FVN and explain why such an architecture is adequate for Federated Learning. In addition, we use auxiliary Blockchain-based systems to facilitate transactions and mitigate malicious behaviors. Next, we discuss in detail one key component of FVN, a federated vehicular cloud (FVC), that is used for sharing data and models in FVN. In particular, we focus on the routing inside FVCs and present our solutions and preliminary evaluation results. Finally, we point out open problems and future research directions of this disruptive technology.
【Keywords】Collaborative work; Machine learning; Data models; Computer architecture; Computational modeling; Batteries; Training
【标题】车载网络中的联邦学习:机遇和解决方案
【摘要】个人设备和隐私问题的新兴进步催生了联邦学习的概念。联邦学习通过协作本地训练和更新共享机器学习模型,同时保护个人数据集,证明了其有效性和隐私保护。本文研究了一种新型的车载网络概念,即联邦车载网络(FVN),可以将其视为一种健壮的分布式车载网络。与传统车载网络相比,FVN 具有集中的组件,并利用 DSRC 和 mmWave 通信来实现更可扩展和更稳定的性能。因此,FVN 可用于支持数据/计算密集型应用程序,例如分布式机器学习和联邦学习。文章首先概述了 FVN 的使能技术。然后,我们简要讨论 FVN 的高级架构,并解释为什么这样的架构足以用于联邦学习。此外,我们使用基于区块链的辅助系统来促进交易并减轻恶意行为。接下来,我们将详细讨论 FVN 的一个关键组件,即联邦车辆云 (FVC),用于在 FVN 中共享数据和模型。特别是,我们关注 FVC 内部的路由,并展示我们的解决方案和初步评估结果。最后,我们指出了这种颠覆性技术的开放问题和未来的研究方向。
【关键词】协作工作;机器学习;数据模型;计算机架构;计算建模;电池;训练
【发表时间】2021
【收录时间】2022-07-06
【文献类型】Article
【论文大主题】区块链联邦学习
【论文小主题】联邦学习为主体
【影响因子】10.294
【翻译者】石东瑛
评论