【Author】 Li, Dun; Han, Dezhi; Weng, Tien-Hsiung; Zheng, Zibin; Li, Hongzhi; Liu, Han; Castiglione, Arcangelo; Li, Kuan-Ching
【Source】SOFT COMPUTING
【Abstract】Federated learning (FL) is a promising decentralized deep learning technology, which allows users to update models cooperatively without sharing their data. FL is reshaping existing industry paradigms for mathematical modeling and analysis, enabling an increasing number of industries to build privacy-preserving, secure distributed machine learning models. However, the inherent characteristics of FL have led to problems such as privacy protection, communication cost, systems heterogeneity, and unreliability model upload in actual operation. Interestingly, the integration with Blockchain technology provides an opportunity to further improve the FL security and performance, besides increasing its scope of applications. Therefore, we denote this integration of Blockchain and FL as the Blockchain-based federated learning (BCFL) framework. This paper introduces an in-depth survey of BCFL and discusses the insights of such a new paradigm. In particular, we first briefly introduce the FL technology and discuss the challenges faced by such technology. Then, we summarize the Blockchain ecosystem. Next, we highlight the structural design and platform of BCFL. Furthermore, we present the attempts ins improving FL performance with Blockchain and several combined applications of incentive mechanisms in FL. Finally, we summarize the industrial application scenarios of BCFL.
【Keywords】Blockchain; Federated learning; Smart Contract; Incentive mechanism; Industrial Applications
【标题】面向安全分布式机器学习系统的联邦学习区块链:系统调查
【摘要】联邦学习(FL)是一种很有前途的去中心化深度学习技术,它允许用户在不共享数据的情况下合作更新模型。 FL 正在重塑现有的数学建模和分析行业范式,使越来越多的行业能够构建隐私保护、安全的分布式机器学习模型。然而,FL的固有特性导致了实际运行中存在隐私保护、通信成本、系统异构、模型上传不可靠等问题。有趣的是,与区块链技术的集成为进一步提高 FL 的安全性和性能提供了机会,同时扩大了其应用范围。因此,我们将区块链和 FL 的这种集成称为基于区块链的联邦学习 (BCFL) 框架。本文介绍了对 BCFL 的深入调查,并讨论了这种新范式的见解。特别是,我们首先简要介绍了 FL 技术,并讨论了这种技术面临的挑战。然后,我们总结了区块链生态系统。接下来,我们重点介绍BCFL的结构设计和平台。此外,我们介绍了使用区块链提高 FL 性能的尝试以及 FL 中激励机制的几种组合应用。最后,我们总结了BCFL的工业应用场景。
【关键词】区块链;联邦学习;智能合约;激励机制;工业应用
【发表时间】2022
【收录时间】2022-07-06
【文献类型】Article
【论文大主题】区块链联邦学习
【论文小主题】两者结合
【影响因子】3.732
【翻译者】石东瑛
评论